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Retarded Green Functions and Modified
Dispersion Relations

Daniel Arteaga,1,4 Renaud Parentani,2 and Enric Verdaguer3

We analyse a three-field model, which describes a relativistic two-level atom interact-
ing with a radiation bath. From the one-loop retarded propagators at finite temperature
we extract the transition rates and the modifications of the dispersion relations. To
further investigate the relationships between propagators and these physical quantities,
we analyse a non-equilibrium situation in which an additional atom is present in the
bath. Preliminary results indicate that transition rates can still be extracted from the (re-
tarded) propagator. This approach could therefore be useful in relating high-frequency
(trans-Planckian) dispersion relations to the physical processes occurring at these
scales.

KEY WORDS: dispersion relation; decay rate; thermal field theory; non-equilibrium
field theory.

1. INTRODUCTION AND MOTIVATION

In quantum field theory, for stable particles in the Minkowski vacuum, the
energy as a function of the momentum—i.e., the dispersion relation—is deter-
mined by the position of the poles of the two-point Feynman propagator in the
complex energy plane. The poles always lie on the real axis in the case of stable
particles. This relation between the pole structure and the energy is valid even
non-perturbatively (Peskin and Schroeder, 1998; Weinberg, 1995). Since the par-
ticle propagation is Lorentz invariant, the dispersion relation E2 = m2 + p2 and,
in general, the details of the particle propagation are fully determined by one
parameter, the physical mass of the particle m.
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When the particles are unstable, asymptotic regions do no longer exist in a
strict sense and hence the particle concept is also an approximation. The pole of
the propagator acquires an imaginary part, which is proportional to the decay rate
of the unstable particle, according to the optical theorem (Peskin and Schroeder,
1998; Weinberg, 1995). The real part of the pole still gives the energy of the
particle as a function of the momentum, but now only in an approximate way, in
accordance with the energy–time uncertainty principle.

The situation gets more involved when the Minkowski vacuum is replaced
by a less trivial state such as a thermal background (Das, 1997; le Bellac, 1996;
Landsman and van Weert, 1987) or a curved spacetime background (Birrell and
Davies, 1982; Wald, 1994). Several comments are in order. First, in these back-
grounds, the closed time path (CTP) formalism of field theory has to be applied
(Chou et al., 1985; Keldysh, 1965; Schwinger, 1961). Second, it remains to be
seen whether the real and imaginary parts of the pole of some propagator still
admit similar interpretations as dispersion relations and decay rates. Third, even
if such an interpretation is found, it must be noted that the interactions with the
background excitations will induce terms in the self-energy which will effectively
break the (local) Lorentz invariance of the free propagation. Last, one expects a
richer phenomenology (including for instance dissipation, dispersion and deco-
herence), which cannot be probably fully extracted from a two-point propagator.
Our endeavour is to determine the set of physical observables that can be extracted
from the two-point propagator.

In the case of a thermal background, Weldon (1983) showed that the imag-
inary part of the poles of the retarded propagator admitted an interpretation, not
as a decay rate, but rather as a rate of approach to thermal equilibrium. Although
he did the demonstration at one loop, it can be generalized to any order in pertur-
bation theory (Bedaque et al., 1997). Concerning the real part of the poles, it is
usually assumed that it still indicates the energy of the particle as a function of the
momentum. Although there are several arguments in support of this interpretation
(see for instance Arteaga et al., 2004a; Donoghue et al., 1985), we are not aware
of a formal proof.

A rather different description of the particle propagation in a thermal bath is
the one provided by the open quantum system approach, working in the formalism
of first quantization. There one assumes that a full quantum system can be divided
in two different parts, the distinguished subsystem, consisting in our case of the
particle in which we are interested, and the environment, consisting in the ther-
mal bath. The particle dynamics can be described by the time evolution of the
reduced density matrix ρr(x, x′; t), or equivalently by the corresponding Wigner
function Wr(x, p; t) (Hillery et al., 1984). The equation describing the time evolu-
tion is called the master equation; and from it all the phenomena associated to the
propagation of the particle can be extracted in principle, even in non-equilibrium
situations.
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One can find a link between the two different descriptions, at least in the
case in which the particle field is sufficiently massive so as to remain thermally
unexcited. In this case, the distinguished system is a single excitation of the particle
field and the environment is the radiation field. The reduced density matrix for the
one-particle state ρ̂r can be computed from the state of the quantum fields ρ̂ by
considering just the one-particle sector of the particle field and tracing over the
environment degrees of freedom. Schematically,

ρ̂r = Trenv(P̂ ρ̂P̂ ), (1)

where P̂ is the operator that selects the one-particle sector from the field density
matrix. The state of the fields ρ̂ will initially correspond to a one-particle excitation
on top of a thermal radiation field. In this situation, the dynamics of the reduced
density matrix encodes most of the information about the particle propagation.5

However, as we have commented, some of the relevant aspects of the particle
propagation may also probably be deduced from the analytic structure of the
retarded equilibrium propagator.

In the case of the propagation in a curved spacetime background one expects
a similar situation. Again, the CTP formalism has to be employed. Interaction
with the virtual radiation modes in the curved background will induce quali-
tatively similar phenomena in the propagating particles, such as particle decay,
dispersion or modification of the dispersion relation. In particular, one expects that
the effects associated with the radiative gravitational corrections in a non-trivial
background may significantly modify the particle dynamics when the Planck scale
is reached. They should therefore play an important role in the resolution of the
trans-Planckian question (Jacobson, 1991), both in black hole physics (Brout et al.,
1995; Helfer, 2003) and cosmology (Martin and Brandenberger, 2001; Niemeyer
and Parentani, 2001). By analogy to the thermal case, we expect that at least some
of the relevant aspects of the particle propagation can be deduced from the analytic
structure of the propagator, see Arteaga et al. (2004a).

Since the propagation in a curved spacetime background closely resembles,
from a qualitative point of view, the propagation in a thermal background, in
Arteaga et al. (2004b) we studied the propagation of a scalar particle in a thermal
bath of gravitons, in order to gain some physical insight in the corresponding
curved background situation. We computed the one-loop correction to the position
of the pole of the retarded propagator. Unfortunately, us this correction was purely
real at one loop, due to kinematica constraints in the relevant one-loop diagrams.
This prevented us from analysing properly the dissipative effects associated with
the imaginary part. However, there is no reason to expect that the imaginary part

5 Note, however, that not all the information is encoded in the reduced density matrix: some quantities
involving evaluation at different times cannot be extracted from the time evolution of the reduced
density matrix (Calzetta et al., 2003).
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will vanish at higher orders in perturbation theory, neither in the thermal case nor
in curved backgrounds.

In this paper, we analyse a simpler physical system that is free of the kine-
matical constraints that made the imaginary part of the pole vanish, but nev-
ertheless shows the same kind of dissipative behaviour we could expect in the
gravitational interaction at higher loops. The system contains two massive fields,
which interact with a massless radiation field. We first analyse an equilibrium
situation: namely the propagation in a thermal background. We then analyse the
same system in a different background, consisting of a thermal bath of gravi-
tons plus a one-particle excitation. There are several motivations for studying
this second case. First, we analyse the system in a background which is not
thermal and thus is not tied by the particular, non-generic, properties of thermal
field theory. Second, the intermediate states of a particle decay will naturally
involve non-equilibrium backgrounds characterized by the presence of addi-
tional one-particle states. Third, the computation of the reduced density ma-
trix from a field theory setting, following Eq. (1), will probably also involve
backgrounds with one-particle states. Finally, we will check whether the inter-
pretation of the imaginary part of the poles of the retarded propagator as rates
of approach to thermal equilibrium still holds in this particular non-equilibrium
situation.

The plan of the paper is as follows: In Section 2 we introduce the model.
In Sections 3 and 4 we present the results of the one-loop correction to the
propagator and discuss its interpretation, both in the vacuum (Section 3) and
in a thermal bath (Section 4). In Section 4 we also stress the need of the CTP
approach in backgrounds different than the vacuum. With similar techniques as
in Section 4, in Section 5 we discuss the corrections to the propagator in a non-
equilibrium background characterized by the presence of an additional atom.
Finally, in Section 6 we summarize and discuss the main results.

We use a system of units with h = c = kB = 1. The signature of the metric
will be (−,+,+,+).

2. A THREE-FIELD MODEL

We consider a quantum field model consisting of two massive scalar fields
φM and φm, of masses M and m, respectively, and a massless scalar field χ , which
interact via a trilinear interaction, with a coupling constant g̃. The action for the
model is:

S = 1

2

∫
d4x

(
∂µφM∂µφM

+M2φ2
M + ∂µφm∂µφm + m2φ2

m + ∂µχ∂µχ + 2g̃φMφmχ
)
,

(2)



Retarded Green Functions and Modified Dispersion Relations 1669

where we consider that M > m. Notice that in this model the coupling constant
g̃ has dimensions of energy. We prefer to work with the dimensionless coupling
constant g = g̃/m.

The model allows for two equivalent alternative interpretations: the excita-
tions of the two fields φM and φm may correspond to two different particles, or
either they may correspond to two different internal degrees of freedom of the
same particle. In other words, the doublet (φm, φM ) may represent a particle with
two internal states, one being more energetic than the other.

We will be interested in considering the limit in which the masses of the two
fields are very large, while their mass difference �m = M − m is of the order of
magnitude E of the energies involved in the problem: M,m � �m and �m ∼ E.
In this limit, the system can be considered a relativistic two-level atom of mass m,
represented by (φM, φm), interacting with a radiation field. This model was already
used in Parentani (1995) to study the consequences of the recoils of a uniformly
accelerated two-level atom subject to the Unruh (1976) effect.

From now on we will alternate the field-theoretic and atomic-like description
and notations, often naming the particle represented by the doublet (φm, φM ) as
the “atom” and indicating quantities referring to the excited state φM with a star
and quantities related to the fundamental state φm without the star.

3. GREEN FUNCTIONS IN THE VACUUM

At zero temperature, the self-energy �(T =0)(p2) of the field φm is defined
through

G
(T =0)

F (p) = −i

p2 + m2 + � (T =0)(p2)
, (3)

where G
(T =0)

F (p) is the zero temperature Feynman propagator of φm. We recall
that the self-energy can be computed as the sum of all one-particle irreducible
diagrams with amputated external legs (see e.g. Peskin and Schroeder, 1998;
Weinberg, 1995). At one loop, the self-energy corresponds to the diagrams in the
Fig. 1 and for the case of the fundamental atomic state, the energy is found to be:

� (T =0)(p2) = g2m2

(4π )2

[
M2

p2
ln

(
1 + p2

M2
− iε

)
− M2

m2
ln

(
1 − m2

M2

)
+ ln

(
p2 + M2

M2 − m2
− iε

)]
. (4)

The calculation is standard and the details closely follow those of Arteaga et al.
(2004b). For the excited state φM , the self-energy is found just by exchanging M

with m: � (T =0)∗(p2) = � (T =0)(p2)[M ↔ m].
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Fig. 1. Feynman diagrams leading to the one-loop self-energy of the fields φm and
φM (respectively the fundamental and excited atomic states). Single straight lines
represent the fundamental state, double lines the excited state, and curly lines the
massless particle.

We have employed an on-shell renormalization scheme in order to absorb
the divergences, so in this case the real part of the self-energy is zero at the
mass-shell: Re � (T =0)(−m2) = 0. This ensures, according to the Källen–Lehman
representation of the propagator, that the masses m and M correspond to the true
masses of the two states of the atom.6

The decay rate, defined as the probability of decay per unit time, is propor-
tional to the imaginary part of the self-energy at the mass-shell, according to the
optical theorem (Peskin and Schroeder, 1998; Weinberg, 1995). For the excited
stated the decay rate 	∗

− is proportional to the mass gap:

	∗
− = − 1

M
Im �T =0∗

(−M2) ≈ g2

8π
�m, (5a)

while the low-mass state is of course stable:

	− = − 1

m
Im � (T =0)(−m2) = 0. (5b)

Notice that the decay rate of the heavy state, as expected, is governed by the mass
gap and does not depend on the mass of the atom.

A similar analysis can be made for the self-energy 
 of radiation field χ .
Since there is no gauge invariance protecting the mass of the radiation field, the
renormalization process will generate a mass term for the radiation particle. We
will put to zero the renormalized mass, so that the real part of the self-energy
vanishes. The imaginary part of the self-energy automatically vanishes on-shell,
since a real massless particle cannot decay. However, the imaginary part of the
self-energy is non-zero off-shell because the virtual excitations of the radiation
field decay with a rate given by

γ−(q0, q) = − 1

q0
Im 
(T =0)(q2) (6)

in the laboratory rest frame.

6 Strictly speaking, this is only true for the stable states such as φm, which are the only ones that have
well-defined asymptotic modes.
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4. GREEN FUNCTIONS IN A THERMAL BACKGROUND

In this section we will consider the situation in which the radiation field
is not in its vacuum state but is in a thermally excited state corresponding to a
temperature of the order of the mass gap �m . This means that the massive scalar
fields will remain unexcited in the vacuum.

We will incorporate the thermal effects into the self-energy through the real-
time description of thermal field theory (Das, 1997; le Bellac, 1996; Landsman
and Weert, 1987), which can be seen as a particular application of the CTP method
in non-equilibrium field theory.

In the CTP approach, which can be applied for an arbitrary initial state ρ̂, the
number of degrees of freedom is doubled. One has to consider four propagators
organized in a 2 × 2 matrix Gab(x, x ′). The 11 and 22 components correspond
respectively to the Feynman (time-ordered) and Dyson (anti-time-ordered) propa-
gators, and the off-diagonal components correspond to the Whightman functions
(non-ordered). The self-energy also becomes a matrix �ab(x, x ′), defined through

Gab(x, x ′) = G
(0)
ab (x, x ′) +

∫
d4y d4z G(0)

ac (x, y)
[−i�cd (y, z)

]
Gdb(z, x ′), (7)

where G
(0)
ab (x, x ′) are the propagators of the free theory. Perturbation theory can be

organized as usual, but taking into account that there will be two kinds of vertices
and four kinds of propagators. In particular, the self-energy components �ab(x, y)
correspond to the sum of all one-particle irreducible diagrams connecting an a

with a b vertex.
An interesting combination is the retarded propagator GR(x, x ′) =

G11(x, x ′) − G12(x, x ′), which is directly related to the so-called retarded self-
energy �R(x, x ′) = �11(x, x ′) + �12(x, x ′) through

GR(x, x ′) = G
(0)
R (x, x ′) +

∫
d4y d4z G

(0)
R (x, y)

[ − i�R(y, z)
]
GR(z, x ′). (8)

In general, the retarded and advanced propagators are the unique single combi-
nations that verify a self-referent equation such as the previous one. However,
notice that the computation of �R requires the use of all the CTP propagators as
explained earlier and hence it is not possible to do a perturbative expansion just in
terms of the retarded propagator. In the thermal case, the state is homogeneous and
stationary, so that the Fourier transform with respect to x − x ′ can be introduced.
In this case, the previous equation can be solved for GR(p):

GR(p) = −i

p2 + m2 + �R(p)
. (9)

In the Fourier representation, the retarded propagator is analytic in the upper
p0-plane.
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As commented in Section 1, at finite temperature the real and imaginary
parts of the poles of the retarded propagator, given by the on-shell values of the
retarded self-energy, admit interpretations as the dispersion relations and decay
rates, respectively. Although we will also compute the real part of the self-energy,
in this paper we will mainly concentrate on the analysis of the imaginary part.

The imaginary part of the retarded self-energy can be expanded in general as

Im �R(Ep, p) = −Ep[	−(p) − 	+(p)], (10)

where 	−(p) and 	+(p) are respectively the net decay and creation rates, which
depend on the temperature T , and where Ep is the energy of the excitation. The
decay rate 	−(p) is the probability per unit time for an incoming particle with
momentum p to decay to any other state into the thermal bath (this includes
simply going to a different momentum state). Similarly, the creation rate 	+(p) is
the probability per unit time that the state of momentum p is spontaneously created
from the thermal bath. The decay and creation rates verify the detailed equilibrium
condition 	+(p) = e−Ep/T 	−(p). Differently to the vacuum case, they are usually
computed in the laboratory reference system.

For an ensemble of particles obeying the Bose–Einstein statistics and de-
scribed by the distribution function f (p, t), the transitions rates will be propor-
tional to the actual value of the distribution. Similarly, the rate of increase will be
proportional to the creation rate and, because of the Bose–Einstein statistics, will
be favoured for those states already populated. These heuristic arguments suggest
that the time evolution of its distribution function f (p, t), slightly departed from
thermal equilibrium, is given by Weldon (1983)

∂f (p, t)

∂t
= −	−(p)f (p, t) + 	+(p)[1 + f (p, t)] (11)

where the rates 	 have been computed with equilibrium distributions. Therefore
this equation is only valid for distribution functions f (p, t) not far from thermal
equilibrium; if the deviation from thermal equilibrium is larger, the decay and
creation rates have to be computed with the out-of-equilibrium distributions, as
we will see in the next section. Solving the previous differential equation we get

f (p, t) = 1
eEp/T −1

− �f0(p) e−	(p), (12)

where �f0(p) is the initial departure from equilibrium and

	(p) = 	−(p) − 	+(p) (13)

is the rate of approach to the equilibrium. Comparing Eq. (10) with Eq. (13) we
see that the imaginary part of the self-energy is proportional to the rate of approach
to the equilibrium.
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4.1. Atomic Fields φm and φM

In the case considered here the temperature T is much lower than the atom
mass m, so that there are no thermal atoms in the bath. Since an atom cannot be
spontaneously created from a thermal radiation field, 	+(p) = 	∗

+(p) = 0 and the
thermalization rate for the atomic states, 	(p) and 	∗(p), coincides with the net
decay rate 	−(p) and 	∗

−(p). Hence, Eq. (11) will not be of much use here (however,
it will be useful in the next section). In terms of the decay amplitude M∗

− and
M−, to leading order in the coupling constant the decay rates can be computed
as

	∗
−(p) = 1

2E∗
p

∫
d3q

(2π )3

1 + n(|q|)
2|q|

∫
d3p′

(2π )3

1

2Ep′
|M∗

−|2

×(2π )4δ(3)(p + q − p′)δ(E∗
p − |q| − Ep′), (14a)

	−(p) = 1

2Ep

∫
d3q

(2π )3

n(|q|)
2|q|

∫
d3p′

(2π )3

1

2E∗
p′

|M−|2

×(2π )4δ(3)(p + q − p′)δ(Ep + |q| − E∗
p′), (14b)

where Ep =
√

m2 + p2 and E∗
p =

√
M2 + p2, and where n(E) is the Bose–

Einstein distribution function,

n(E) = 1
eE/T −1

. (15)

These two processes correspond to the Feynman diagrams shown in Fig. 2. The
statistical factors n(|q|) and 1 + n(|q|) take into account the presence of radiation in
the bath. The squared decay amplitudes simply correspond to |M−|2 = |M∗

−|2 =
g̃2 = m2g2.

Fig. 2. Feynman diagrams giving the decay rate of the excited and fundamental atom
states with momentum p respectively. On the left, the excited state decays to the
fundamental state by emitting a massless particle into the thermal bath. On the right,
the fundamental state absorbs a massless particle from the bath and gets excited.
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The real and imaginary parts of the retarded self-energy can be obtained from
the various self-energy components. The one-loop φm self-energy is, see Fig. 1,

−i�ab(p) = −g2m2
∫

d4k

(2π )4
G

(0)∗
ab (p − k)�(0)

ab (k), (16)

where G
(0)∗
ab (p) is the free vacuum propagator for the massive field φM , �

(0)
ab (p) is

the free thermal propagator for the radiation field, and no implicit summation is
assumed in this equation. Since the details of the calculation are very similar to
those of Arteaga et al. (2004b), here we will just present the results.

Concerning the real part, the one-loop contribution is the following:

Re �R(Ep, p) ≈ −g2

6

T 2m

�m
, Re �∗

R(E∗
p, p) ≈ g2

6

T 2m

�m
, (17)

The fact that both contribution have opposite sign is simply due to the fact that
both contributions are related by the exchange m ↔ M . Notice that the result is
momentum independent; similar to this happens in electrodynamics (Donoghue
et al., 1985) and gravitation (Arteaga et al., 2004b). Hence, the real part of the
self-energy can be absorbed in the thermal mass

m2
T ≈ m2 − g2

6

T 2m

�m
, M2

T ≈ M2 + g2

6

T 2m

�m
. (18)

The effective dispersion relations E2 = m2
T + p2 and E∗2 = M2

T + p2 are thus
Lorentz-invariant. This is not what one would expect a priori, since the thermal
bath introduces a privileged reference frame and there is no immediate reason why
the effective dispersion relation should preserve the frame independence.

Concerning the imaginary part, for the sake of simplicity we just quote the
results in the non-relativistic limit, |p| � m. For the excited state we have

Im �∗
R(E∗

p, p) = − g2

16π
�mm

[
coth

(
�m
2T

)
+ 1

]

− g2

96π

p2

2m

(
�m
T

)2
[

−3T + �m coth
(

�m
2T

)
sinh2

(
�m
2T

) ]
. (19a)

while for the fundamental state the result is:

Im �R(Ep, p) = − g2

16π
�m m

[
coth

(
�m
2T

)
− 1

]

− g2

96π

p2

2m

(
�m
T

)2
[

−3T + �m coth
(

�m
2T

)
sinh2

(
�m
2T

) ]
. (19b)
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The corresponding decay rates, which correspond to the Feynman diagrams in
Fig. 2, go as follows:

	∗
−(p) = − 1

E∗
p

Im �∗
R(E∗

p, p) = g2

8π
�m [1 + n(�m)]

(
1 − p2

2m2

)

+ g2

24π
�m

(
p2

2m2

)
F (�m/T ) (20a)

	−(p) = − 1

Ep
Im �R(Ep, p) = g2

8π
�m n(�m)

(
1 − p2

2m2

)

+ g2

24π
�m

(
p2

2m2

)
F (�m/T ), (20b)

where F (x) is a shorthand for

F (x) = −3x + x2 coth (x/2)

sinh2 (x/2)
. (21)

When the atom is at rest or the kinetic energy can be neglected in front of the rest
energy, the previous equations reduce to:

	∗
− = 	∗

−(0) = g2

8π
�m [1 + n(�m)] (22a)

	− = 	−(0) = g2

8π
�m n(�m) (22b)

The result obtained from the self-energy coincides with the one computed directly
from the transition rates of Eqs. (14a) and (14b). One can also check that the
vacuum results in the zero temperature limit are recovered.

It is important to point out that Eqs. (22a) and (22b) admit a double inter-
pretation. On the one hand, from the point of view of field theory, they represent
the decay rates of the particle excitations in a thermal bath. We would like to
emphasize that in this context “decay” simply means going to a different state and
not necessarily to a lower mass state. Notice also that the interaction preserves the
total number of particle excitations, so that φM decays into φm and vice versa. On
the other hand, from the point of view of the internal atomic states, 	− describes
the probability of excitation of the fundamental state in a thermal bath and 	∗

−
describes the probability of (stimulated) decay of the excited state into the funda-
mental. For this reason, 	− and 	∗

− also verify the ‘atomic’ detailed equilibrium
condition 	∗

− = e−�m/T 	−, wherein only the mass gap enters.
Finally, let us simply mention that at one loop there is no thermal contribution

to the self-energy of the massless field 
 because of the hypothesis that the massive
fields φm and φM , which are interacting with χ , remain thermally unexcited.
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5. GREEN FUNCTIONS IN A ONE-PARTICLE BACKGROUND

In this section we consider departure from equilibrium situation: we will
compute the Green functions in a background state characterized by the presence
of an atom in its fundamental state, on top of a thermal radiation bath. Since
studying the propagators in this background involves creating an additional test
particle, in total there will be two massive particles interacting with the thermal
radiation.

The CTP formalism, which we have briefly described at the beginning of
the previous section, still applies in this situation. In particular, recall that the
self-energy component ab corresponds to the sum of all one-particle irreducible
diagrams linking an a and a b vertex. Notice also that (8), which connects the
retarded propagator and self-energy, does not depend on any specific property
of thermal field theory but is valid in general. Therefore, in order to obtain the
retarded propagator in this background, we will first compute the relevant self-
energy components, then we will compute the retarded self-energy via the relation
�R(x, x ′) = �11(x, x ′) + �12(x, x ′), and in the end we will use (8) to connect the
retarded self-energy to the retarded propagator. To this end, we also need the free
propagators in the new background state, see the Appendix. The additional particle
give rises to an additional on-shell term in the expression of the free propagators.

In a realistic situation, the atom would be distributed according to a cer-
tain density matrix ρ(x, x′) or equivalently to its corresponding Wigner function
W (p, x), and the problem would not be translation-invariant. However, for simplic-
ity, we shall assume that the atom has a well-defined momentum p′. This implies
that it is completely delocalized in position space and hence spatial translation
invariance is preserved.

For computational simplicity, we will further assume that time translation
invariance is also preserved, although this is not strictly correct because the back-
ground state is no longer stationary (the extra atom on top of the bath will ther-
malize7 ). Anyway, we expect that the general picture shown in this section is not
substantially modified by this hypothesis and in the next section we will argue that
the one-loop results are probably not affected at all.

Adopting this hypothesis, the Fourier transform of the retarded propagator
can be isolated from Eq. (8):

GR(p; p′) = −i

p2 + m2 + �R(p; p′)
. (23)

7 Moreover, we could have considered the case in which the added particle has reached equilibrium
with the heat bath. In this case, the background state would have been stationary. This equilibrium
situation is related to the present case in the following manner. There is an extra thermal averaging in
self-energies which arises from the distribution of the added particle. This is presently under study.
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By GR(p; p′) we denote the retarded propagator in the state characterized by the
extra on shell particle with momentum p′.

One question we want investigate is whether in this background the imaginary
part of the self-energy still admits an interpretation as a decay rate or a rate of
approach to the equilibrium. Following the same kind of heuristic arguments that
led to Eq. (11), the rate of approach to equilibrium of an ensemble of atoms is
described by

∂f (p, t)

∂t
= −	−(p, [f ∗])f (p, t) + 	−(p, [f ∗])[1 + f (p, t)], (24a)

∂f ∗(p, t)

∂t
= −	∗

−(p, [f ])f ∗(p, t) + 	∗
−(p, [f ])[1 + f ∗(p, t)] (24b)

The functions f (p, t) and f ∗(p, t) are the distribution functions of the atoms in
its fundamental and excited atomic states, respectively. For the case of a single
particle, the distribution function f (p, t) is connected to the density matrix of the
state through

f (p, t) = N

∫
d3x d3x′ e−ip·(x−x′) ρ(x, x′; t), (25)

or, equivalently, to the Wigner function through

f (p, t) = N

∫
d3x W (x, p; t) (26)

where N is a normalization constant and similarly for f ∗(p, t). The decay rate
	−(p, [f ∗]) is the probability per unit time for an incoming light state of mo-
mentum p to decay to any other state on top of a background characterized
by a distribution function of heavy states f ∗(p, t). Similarly, the creation rate
	+(p, [f ∗]) is the probability per unit time for a particle with momentum p to be
spontaneously created from the distribution of heavy particles characterized by
f ∗(p, t). Analogous definitions apply for 	∗

−(p, [f ]) and 	∗
+(p, [f ]). In terms of

decay amplitudes, these are expressed as

	∗
−(p) = 1

2E∗
p

∫
d3q

(2π )3

1 + n(|q|)
2|q|

d3k
(2π )3

[1 + f (k)]

2Ek
|M∗

−|2

×(2π )4δ(3)(p − q − k)δ(E∗
p − |q| − Ek), (27a)

	−(p) = 1

2Ep

∫
d3q

(2π )3

n(|q|)
2|q|

d3k
(2π )3

[1 + f ∗(k)]

2E∗
k

|M−|2

×(2π )4δ(3)(p + q − k)δ(Ep + |q| − E∗
k), (27b)
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	∗
+(p) = 1

2E∗
p

∫
d3q

(2π )3

n(|q|)
2|q|

d3k
(2π )3

f (k)

2Ek
|M∗

+|2

× (2π )4δ(3)(p − q − k)δ(E∗
p − |q| − Ek), (27c)

	+(p) = 1

2Ep

∫
d3q

(2π )3

1 + n(|q|)
2|q|

d3k
(2π )3

f ∗(k)

2E∗
k

|M+|2

× (2π )4δ(3)(p + q − k)δ(Ep + |q| − E∗
k). (27d)

For simplicity, we have considered the radiation field to remain in thermal equi-
librium but the expressions could be easily generalized in order to allow for an
arbitrary distribution function of the radiation, f ′(q, t), instead of the thermal
distribution governed by the Bose–Einstein distribution function n(|q|). Finally,
let us note that in our particular case f (p, 0) ∝ δ(p − p′) and f ∗(p, 0) = 0.

In the beginning of this section we have used the notation G and �, but the
relations also apply to the propagator and self-energy of the excited state, G∗ and
�∗, and those of the radiation field, � and 
:

G∗
R(p; p′) = −i

p2 + M2 + �∗
R(p; p′)

, �∗
R(p; p′) = −i

p2 + 
∗
R(q; p′)

(28)

In the sequel, we will compute the modification of the self-energies of the
radiation field χ and the massive field φM . At one loop the low-mass state φm will
not receive modifications.

5.1. Radiation Field

For the radiation field we will focus on the imaginary part of the retarded
self-energy. We can use for instance the following relation (see e.g. Arteaga et al.,
2004a):

Im 
R(q; p′) = i

2
[
21(q; p′) − 
12(q; p′)] (29)

The self-energy component 
12 is given by:


12(q; p′) = −ig2m2
∫

d4k

(2π )4
G

(0)
12 (k; p′)G(0)∗

12 (q − k), (30)

where G
(0)∗
12 (p) corresponds to the free vacuum propagator of φM and G

(0)
12 (k; p′)

corresponds to the free propagator of φm in the background state |p′〉 (see the
Appendix). Restricting for the moment to the on-shell value and discarding
the purely vacuum contribution (because the vacuum contribution corresponds
to the decay rate of a massless particle in the vacuum, and we know that this
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process cannot happen on-shell), we get:


12(|q|, q; p′) = ig2m2
∫

d4k

(2π )4

2π

2E∗
q−k

δ(q0 − k0 + E∗
q−k)

(2π )4

2EkV

× [
δ(3)(k − p′)δ(k0 − Ek) + δ(3)(k + p′)δ(k0 + Ek)

]
. (31)

Similarly, for 
21:


21(|q|, q; p′) = ig2m2
∫

d4k

(2π )4

2π

2E∗
q−k

δ(q0 − k0 − E∗
q−k)

(2π )4

2EkV

× [
δ(3)(k − p′)δ(k0 − Ek) + δ(3)(k + p′)δ(k0 + Ek)

]
. (32)

Summing the two previous results and developing the integrals with the delta
functions one finds:

Im 
R(|q|, q; p′) = − g2m2

4Ep′V

[
2π

2E∗
q−p′

δ(|q| − Ep′ − E∗
q−p′ )

− 2π

2E∗
q−p′

δ(|q| − Ep′ + E∗
q−p′ )

+ 2π

2E∗
q+p

δ(|q| + Ep′ − E∗
q−p′)

− 2π

2E∗
q+p

δ(|q| + Ep′ + E∗
q+p)

]
. (33)

From the four deltas, only one can contribute as:

Im 
R(|q|, q; p′) = − g2m2

8V E∗
q+pEp′

2πδ(|q| + Ep′ − E∗
q+p). (34)

One can assign a decay rate to this self-energy,

γ−(|q|, q; p′) = − 1

|q| Im 
R(|q|, q; p′)

= g2m2

8V |q|E∗
q+pEp′

2πδ(|q| + Ep′ − E∗
q+p). (35)

This decay rate, in fact, corresponds to the absorption rate of the radiation field
by the excited atom in the background. The appearance of the spacetime volume
V follows from the hypothesis that the atom is delocalized. In a more physical
situation it would be replaced by the characteristic volume of the wavefunction
of the atom or by the inverse density of particles per unit volume. In the case in
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Fig. 3. Diagrams contributing to the off-shell imaginary part of the self-energy
of the radiation field in a background characterized by the presence of an atom in
its fundamental state. The two diagrams on the left show the contribution in form
of decay rate and the diagrams on the right the contribution as creation rates. The
only diagram contributing on shell, q = (|q|, q), is the one on the bottom on the
left.

which the atom is originally at rest, we get:

γ−(|q|, q; p′) ≈ g2

8V |q|2πδ(|q| − �m). (36)

We can check that this self-energy truly corresponds to a decay rate computing
directly the relevant Feynman diagram, shown in Fig. 3, by using expressions
analogous to those of Eqs. (27a)–(27d).

In Eq. (33), only one of the four deltas contributed on-shell. We can go
somewhat further by reexpressing this equation off the photon mass-shell:

�Im 
R(q; p′) = − g2m2

4Ep′V

[
2π

2E∗
q−p′

δ(q0 − Ep′ − E∗
q−p′)

− 2π

2E∗
q−p′

δ(q0 − Ep′ + E∗
q−p′)

+ 2π

2E∗
q+p

δ(q0 + Ep′ − E∗
q+p)

− 2π

2E∗
q+p

δ(q0 + Ep′ + E∗
q+p)

]
, (37)
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where �Im 
R(q; p′) is the correction to the equilibrium off-shell self-energy. The
first and third terms on the right hand side of this equation give the modification of
the decay rate due to the background particle with momentum p′, while the second
and fourth terms give the modification of the creation rate, taking into account
the Bose–Einstein statistics of the particles, as it can be seen in Fig. 3. So, the
imaginary part of the retarded self-energy is proportional to the decay rate minus
the creation rate,

Im 
R(q; p′) = − 1

q0

[
γ−(q; p′) − γ+(q; p′)

]
, (38)

thereby recovering the same relation of Eq. (10) that applied to massive fields.
Compare also the previous equation with the corresponding expression in the
vacuum, Eq. (6).

5.2. Massive Field φM

In this case we start by the computation of the real part of the self-energy.
Using the property Re �∗

R(p; p′) = Re �11∗(p; p′) (see e.g. Arteaga et al., 2004b)
and evaluating non-equilibrium contribution to the second Feynman diagram in
Fig. 1, we get

�Re �∗
R(p; p′) = −m2g2

∫
d4k

(2π )4

1

−(p0 − k0)2 + (p + k)2

× (2π )4

2Ep′V

[
δ(3)(k − p′)δ(k0 − Ep′) + δ(3)(k + p′)δ(k0 − Ep′)

]
,

(39)

which gives

�Re �∗
R(p; p′) = m2g2

2Ep′

(
1

(p − p′)2 − (p0 − Ek′)2
+ 1

(p + p′)2 − (p0 + Ek′)2

)
.

(40)

Evaluated in the mass-shell and in the approximation of slowly moving heavy
atoms, one has:

�Re �∗
R(E∗

p, p; p′) = g2

2

m/V

(p − p′)2 − (�m)2
. (41)

Notice that the previous expression cannot be absorbed in the mass term.
For the case of the imaginary part of the self-energy, we can repeat a sim-

ilar calculation to the previous section. Now we have to take into account not
only that the light field is in a one-particle state but also that the massless
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field is in a thermal state. Following similar same steps as in the previous case,
we get:

�Im �∗
R(p; p′) = − g2m2

4Ep′V

[
2π

2|p − p′|δ(p0 − Ep′ − |p − p′|)[1 + n(|p − p′|)]

− 2π

2|p − p′|δ(p0 − Ep′ + |p − p′|)[1 + n(|p − p′|)]

+ 2π

2|p + p′|δ(p0 + Ep′ − |p + p′|)[1 + n(|p + p′|)]

− 2π

2|p + p′|δ(p0 + Ep′ + |p + p′|)[1 + n(|p + p′|)]

+ 2π

2|p − p′|δ(p0 − Ep′ + |p − p′|)n(|p − p′|)

− 2π

2|p − p′|δ(p0 − Ep′ − |p − p′|)n(|p − p′|)

+ 2π

2|p + p′|δ(p0 + Ep′ + |p + p′|)n(|p + p′|)

− 2π

2|p + p′|δ(p0 + Ep′ − |p + p′|)n(|p + p′|)
]

. (42)

These eight terms can be similarly interpreted as the modification to the decay
and creation rates of the massive state due to the presence of the extra atom and
the thermal massless particle. The terms with a global negative sign correspond to
decay and the ones with a global positive sign to creation. So again we have

�Im �∗
R(p; p′) = − 1

p0

[
	∗

−(p; p′) − 	∗
+(p; p′)

]
. (43)

On-shell only the first and sixth terms contribute as

�Im �∗
R(Ep, p; p′) = − g2m2

4Ep′V

[
2π

2|p − p′|δ(Ep − Ep′

− |p − p′|)[1 + n(|p − p′|)]

− 2π

2|p − p′|δ(Ep − Ep′ − |p − p′|)n(|p − p′|)
]

. (44)

The two Feynman diagrams corresponding to these two terms are shown in Fig. 4,
the first being a decay term and the second a creation term. The two terms can be
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Fig. 4. Diagrams contributing to the off-shell imaginary part of the self-energy of
an excited atom, with momentum p, in a background characterized by the presence
of another atom in its fundamental state, with momentum p′. The diagram on the
left corresponds to the decay of the excited atom and one on the right corresponds
to the creation.

added to give a net rate of approach to equilibrium:

�	∗(p; p′) = g2m2

8V |p − p′|E∗
pEp′

2πδ(E∗
p − Ep′ − |p − p′|). (45)

Notice that the thermal contributions cancel exactly. In the case in which the atom
is at rest,

�	∗ = g2

8V �m
2πδ(�m − |p − p′|). (46)

We end this section by considering the fact that the interaction preserves the
total atomic number, i.e.,

d

dt

∫
d3p

(2π )3

[
f (p, t) + f ∗(p, t)

] = 0. (47)

According to Eqs. (27a)–(27d), a sufficient condition for this to hold is that∫
d3p

(2π )3
[1 + f ∗(p, t)]	∗

+(p) =
∫

d3p
(2π )3

f (p, t)	−(p), (48a)

∫
d3p

(2π )3
[1 + f (p, t)]	+(p) =

∫
d3p

(2π )3
f ∗(p, t)	∗

−(p), (48b)

which expresses that the heavy states decay into the light ones and vice versa.
Evaluating these equations at initial time and taking into account that f ∗(p, 0) = 0,
we have ∫

d3p
(2π )3

	∗
+(p) =

∫
d3p

(2π )3
f (p)	−(p), (49a)

∫
d3p

(2π )3
[1 + f (p)]	+(p) = 0. (49b)
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The second equation is consistent with the fact that the creation rate of light
particles vanishes, 	+(p) = 0. Notice that the decay rate of light particles 	−(p)
is just the thermal value given by Eq. (20b). Notice also that the creation rate
of the heavy states comes entirely from the non-equilibrium part and is given by
	∗

+(p) = �	∗(p)n(|p − p′|). One can therefore check that effectively Eq. (49a)
holds. Hence, this provides a test of the consistency of the theory.

6. SUMMARY AND DISCUSSION

We have studied a field theory description of a relativistic two-level atom in
a radiation field. By means of the analysis of the poles of the retarded propagators
of the two fields φm and φM we have recovered the basic properties of the atomic
levels: At zero temperature, the fundamental state of the atom is stable, while the
excited state has a finite lifetime inversely proportional to the mass gap between
the two states �m . At finite temperature, the fundamental state is no longer stable
but has an characteristic excitation time given by 	−1

− , which is proportional to
the density of radiation. The decay rate of the excited state is enhanced because
of the Bose–Einstein statistics.

These results are of course perfectly known, but it is interesting to see how
the atomic description emerges from the field-theoretic language. For instance,
from the point of view of field theory, 	− and 	∗

− are interpreted as the decay rates
of the particle excitations of the fields φm and φM , respectively. From the point of
view of the internal atomic states, 	− corresponds to the probability of transition
from the fundamental to the excited state per unit time and 	∗

− corresponds to the
probability of transition from the exited to the fundamental state. Since the atom
has only two levels, 	− and 	∗

− obey a detailed equilibrium condition. Notice that
the field creation rates 	+ and 	∗

+ vanish since no atoms can be spontaneously
created from a thermal bath.

We have also analysed the same system in a non-equilibrium background
consisting of an extra atom on top of the thermal bath. The results show that the
usual interpretation of the imaginary part of the self-energy as a difference of
destruction and creation rates holds in this out-of-equilibrium situation both for
the radiation field and the massive field.

In the case of a massless particle, its self-energy acquires an imaginary part,
which reflects the fact that radiation can be absorbed by the atom in the background.
This is in contrast to the vacuum, where massless particles are always stable and,
thus, do not develop an imaginary part in the poles of the propagators. In the case of
the an exited atom, its effective decay rate increases because of the presence of the
additional atom. The contribution to the effective rate can be split as the difference
of two terms: first, a net decay rate minus a creation rate; and second, the reason
why the atom in the fundamental state can become exited. It is interesting to note
that the increase of the effective decay rate is independent of the temperature,



Retarded Green Functions and Modified Dispersion Relations 1685

although each term separately depends on it. This is a consequence of the fact that
the system effectively behaves as linear (in linear systems the retarded propagator
is independent of the background state).

However, the aforementioned results are preliminary because we have not
properly taken into account the fact that the background is not stationary. To
get manageable expressions, we have assumed that the Green functions are time
translation invariant, which cannot be the case if the background is thermalizing.
It is likely that our one-loop results are not affected because the effects of the
background thermalization on the dynamics of the test particle are of subleading
order in the coupling constant g. Moreover, in the case in which the background
atom is at rest, the thermalization effects will basically consist in the fact that
the internal excited state will become partially populated. We could thus recover
the equilibrium situation by considering that the background atom is not in the
fundamental but in a thermally averaged internal state, which amounts to an
additional thermal average of our expressions. Therefore, we do not expect that the
qualitative description in the non-equilibrium background is significantly affected
by this additional hypothesis.

We have also studied the equations governing the time evolution of the
distribution function of the two atomic states, f and f ∗, as a function of the decay
and creation rates, both in a standard near-equilibrium situation [Eq. (11)] and in
an out-of-equilibrium situation [Eqs. (24a) and (24b)]. It should be noted that the
non-equilibrium expression is in fact a direct generalization of the equilibrium
equation: it is enough to reinterpret every term of the thermal expression into the
more general non-equilibrium situation.

Equations (11), and (24a) and (24b) show that the imaginary part of the
self-energy gives, at least, the time evolution of the distribution functions, which
roughly speaking amounts to the squared modulus of the wavefunction of the in-
coming test particles. These equations are derived from arguments of plausibility;
however, one should be able to deduce them from the equations governing the
evolution of the density matrix of the atomic states in the radiation field, at least
under some reasonable approximation. We should note that, while the basic fea-
tures of the atomic behaviour can be reproduced from the analysis of the poles of
the field propagators, the fine details of the evolution of the density matrix cannot
probably be obtained from a field theoretic pole analysis.

Although most of the discussion given earlier in the paper has been related
to quantities extracted from the imaginary part of the pole, we have also briefly
analysed the real part of the poles, which give the modification of the dispersion
relation. The finite temperature contribution to the dispersion relation of the atomic
states can be absorbed in a thermal contribution to the mass, although this is not
what one naively expects. This also happens in other situations (Arteaga et al.,
2004b; Donoghue et al., 1985). However, in out-of-equilibrium situations there are
effectively contributions to the dispersion relation that cannot be absorbed in the
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thermal mass. This points towards the direction that the absorption of the modified
dispersion relation in the mass is a property linked to the particular features of
thermal field theory.

APPENDIX: FREE PROPAGATORS IN A ONE-PARTICLE
STATE BACKGROUND

In this appendix we compute the free propagators for the field φm in the
background state characterized by the presence of a one-particle excitation with
momentum p′. This state will be denoted by |p′〉. We need the full set of CTP
propagators, i.e.,

Gab(x, x ′; p′) =
(

〈p′|T φ̂m(x)φ̂m(x ′)|p′〉 〈p′|φ̂m(x)φ̂m(x ′)|p′〉
〈p′|φ̂m(x ′)φ̂m(x ′)|p′〉 〈p′|T̃ φ̂m(x)φ̂m(x ′)|p′〉.

)
(A.1)

From now on we drop the subindex m to simplify the notation.
In terms of creation operators, the state |p′〉 corresponds to

|p′〉 = (2π )3/2√
2Ep′V

â
†
p′ |0〉, (A.2)

where V is the volume of the space. Let us check that the normalization is the
correct one:

|||p′〉||2 = |〈p′|p′〉|2 (2π )3

2Ep′V
〈0|apa

†
p′ |0〉 = (2π )3

2Ep′V
= (2π )3

V
δ(3)(0),

which is equal to one with a suitable regularization of the delta function (for
instance working in a cubic box of length V 1/3). We are using a convention in
which

[âp′ , â†
q] = 2Ep′δ(3)(p′ − q). (A.3)

Let us now compute a Whightman function in the background state |p′〉:

G
(0)
21 (t, x; t ′, x′; p′) = 〈p′|φ̂(t, x)φ̂(t ′, x ′)|p′〉 = (2π )3

2Ep′V
〈0|âp′ φ̂(t, x)φ̂(t ′, x ′)â†

p′ |0〉

= (2π )3

2Ep′V

∫
d3k

2Ek(2π )3

d3k′

2Ek′(2π )3

× e−iEpt+ip·x eiEk′ t ′−ik′ ·x′ 〈0|âp′ âkâ
†
k′ â

†
p′ |0〉

+ (2π )3

2Ep′V

∫
d3k

2Ek(2π )3

d3k′

2Ek′ (2π )3

× eiEkt−ik·x e−iEk′ t ′+ik′ ·x′ 〈0|âp′ â
†
kâk′ â

†
p′ |0〉, (A.4)
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where we have used the expansion of the field operator in terms of creation and
annihilation operators:

φ̂(t, x) =
∫

d3k
2Ek(2π )3

1

2Ek
(âk e−iEkt+ik·x +â

†
k eiEkt−ik·x). (A.5)

Next, we evaluate explicitly the different contractions of the creation and annihi-
lation operators:

G
(0)
21 (t, x; t ′, x′; p′) =

∫
d3k

2Ek(2π )3
e−iEk(t−t ′)+ik·(x−x′)

+ (2π )3

2Ep′V

[
e−iEk(t−t ′)+ik·(x−x′) + eiEk(t−t ′)−ik·(x−x′) ], (A.6)

which in the Fourier representation becomes

G
(0)
21 (k; p′) = 2π

2Ek
δ(k0 − Ek) + (2π )4

2Ep′V

[
δ(3)(k − p′)δ(k0 − Ek)

+δ(3)(k + p′)δ(k0 + Ek)
]
. (A.7)

Using the properties of the delta functions, the result can be further reorganized
as

G
(0)
21 (k; p′) = 2πδ(k2 + m2)

[
θ (k0) + (2π )3

V
δ(3)(k − p′)θ (k0)

+ (2π )3

V
δ(3)(k + p′)θ (−k0)

]
. (A.8)

Repeating a similar calculation for the Feynman propagator we find:

G
(0)
11 (k; p′) = −i

p2 + m2 − iε
+ 2πδ(k2 + m2)

(2π )3

V

×[
δ(3)(k − p′)θ (k0) + δ(3)(k + p′)θ (−k0)

]
. (A.9)

The complete matrix of CTP propagators is given by

G
(0)
ab (k; p′) =

( −i
k2+m2−iε

2πδ(k2 + m2)θ (−k0)

2πδ(p2 + m2)θ (k0) i
k2+m2+iε

)

+ δ(k2 + m2)
(2π )4

V

[
δ(3)(k − p′)θ (k0)

+, δ(3)(k + p′)θ (−k0)
] (

1 1

1 1

)
. (A.10)
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